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In this paper it is supposed that the coefficients in the recurrence formula for
orthogonal polynomials have finite limits as the index goes to infinity over the set
of even and odd integers. The asymptotic behavior of the ratio of two contiguous
polynomials and the limiting zero distribution are discussed. Applications to
quadrature formulas are given.  © 1985 Academic Press, Inc.

I. INTRODUCTION

Let {g,(x)} be a sequence of monic polynomials that satisfy a recurrence
relation of the form

qn+1(x)=(x—an) qn(x)_ﬁnqnfl(x); n=0’ 1’ 29""

(1.1)
q.{x)=0; qo(x)=1; a,eR, B,>0.

It is well known that there exists a distribution function W(x) on the real
line such that the polynomials {q,(x)} satisfy the orthogonality relations

[ 4.x) gl aW(x) =925, (12)

— oo

On the other hand, orthonormal polynomials always satisfy a relation of
the form (1.1), with B8,=(y,_1/v.)* [9, Theorems1.2.1 and I1.1.5]. The
polynomial ¢,(x) has » real and distinct zeros, x,,<x,,< '+ <X,,, and
these zeros belong to the interval on which W(x) is concentrated [9,
Theorem 1.2.2].
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In this paper we assume that the sequences {a,} and {8,} in (1.1) have
the following asymptotic behavior

lim a,,=a;; lim B,,=b?%;

n-»> o n o0 (1‘3)
3 . 4 — hR2
lim oy, =ay; lim B,,,=b3.
n— o H— OO

If we use the estimate

X, .l < max |o|+2 max )2
o<jgn—1 1gj<n—1

[15, Formula (11)], then we can conclude that the zeros of the
polynomials {g,(x)} are always in a compact interval, say [ —4, 4].

Nevai [13, 14] made a thorough investigation of the case a, = a, =a and
b,=b,=>5 (in [14] b was supposed to be greater than zero). One of his
resuits is that the zeros of the corresponding orthogonal polynomials have
regular arcsine behavior. This behavior of the zeros was already known for
a great class of orthogonal polynomials (see, e.g., [8] and [19]), but in
most cases the result follows from a priori knowledge of the distribution
function W with respect to which the polynomials are orthogonal.
However, one may only have access to the recurrence formula (1.1)
without any knowledge of the distribution function W. Chihara [6, 7]
shows that under (1.3) (with b, =b,=>5) one can use chain sequences to
prove that the zeros of the orthogonal polynomials are dense on the union
of two disjoint intervals. These chain sequences were also used by Maki
[12] to prove the regular arcsine behavior for the case a,=a,=a and
b,=b,=b, but he made the extra assumption that §, < b

Akhiezer [17] studied orthogonal polynomials with a weight function
that is concentrated on the union of two disjoint intervals and these
polynomials have recurrence coefficients that satisfy (1.3). These two dis-
joint intervals are typical for the kind of asymptotic behavior of the
recurrence coefficients that we will investigate, this was already apparent
from Chihara’s result mentioned earlier. The case where the two intervals
are reduced to two points needs special attention: Krein [2, Article VI]
gave necessary and sufficient conditions on the recurrence coefficients for
the only limit points of the support of W to be a finite number of given
points. In Section IV we will show that these cases appear when b, or b, is
equal to zero.

In this paper we will prove some asymptotic properties of the
polynomials {g,(x)} under the condition (1.3), in particular we will give
the asymptotic value of the ratio of two orthogonal polynomials the index
of which differ by one or two units. We will use these asymptotics to obtain
the zero distribution of these polynomials. As an application we will give
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some quadrature formulas associated to these asymptotics. Let us note that
Geronimus [11] also obtained the zero distribution for these polynomials
by using potential theory.

II. ASYMPTOTIC PROPERTIES

From the recurrence formula (1.1) we easily obtain

qon+ I(x) = (x—_aZn) an(x)—ﬁanZn—I(x)9
Gon+2(X) = (X = 020 1 1) G204 1(X) = Brn v 1 G2n(X).

Solving the second equation for ¢,,, ;(x) yields

Gan+2(X) + Ban s 1924(X)
X —0%ap 4 ’

9on+ l(x) =

and putting this in the first equation gives the following recurrence formula
for the even-indexed polynomials

Gons2(X)= [(x — U ) (X = 0y 1) = Bans1— Baw x—}—zu] gan(x)

X — 0,4

— BanBan—1 Gan—2(X), (2.1)

X — Uz

and a similar reasoning leads to

u"
an+3(x)=[(x—“2n+1)(X—“2n+2)—ﬁ2n+2 ﬁ2n+l ; +2] Gan+1(%)
2n

X — oy,
= Bons 1 Bon " 41 (%). (22)

2n

We will use these modified recurrence formulas to prove asymptotics for
the polynomials ¢,(x) as n tends to infinity. We need some notation: let X,
be the set of accumulation points of the set {x,,|i=1,.,nn=1,2,.} and
X,={xeR|q,(x)=0 for infinitely many n}. An element of X, is not
necessarily an accumulation point of the set {x,,}: if we take a weight
function on [—f, —a]u[a, ] (0<a<p) that is symmetric around the
origin, then the origin will be in X, since every orthogonal polynomial of
odd degree will be zero at the origin, but we can not find a sequence of
zeros (except for the constant zero sequence) that converges to zero.
Indeed, polynomials of even degree will not vanish inside (—a, a) because
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if there is one zero in that interval then by symmetry there will also be a
second zero which is impossible (orthogonal polynomials can have at most
one zero in an interval where the distribution function W is constant). By
the same reasoning the origin will be the only zero in (—a, a) for the
polynomials of odd degree.

It is well known that S(W) < X, U X,, where S(W)={xeR|W(x+¢)—
W(x —¢)>0 for all £ >0} is the spectrum of the distribution function W [7,
p. 60], and the spectrum may be different from X, U X,, as can be seen
from the previous remark. By the notation f,(x)~ g(x) we mean that the
ratio f,(x)/g(x) tends to one. The Riemann sphere Cu {0} is denoted by
C. Finally we define Zy= {x,,li=1,.,n; n>N}.

THEOREM 1. If the coefficients in the recurrence formula (1.1) satisfy
(1.3) then as n - ©

0 06) = (e e ) - 03 )

+ (2 —a))z—ay) — (b3 +b3)1* — 4b3b3} (23)
uniformly on compact subsets of C\(X,; U X,).

Proof. In the Introduction we indicated that the zeros of {q,(x)} are all
in a compact interval [ — A4, A], hence the ratio q,(z)/q,_»(z) is analytic in
C\[—4, A] for every n>2. If K is a compact set in C\(X; U X,), then K
can have at most a finite number of zeros of {g,(x)} and each of these are
only a finite number of times a zero. This means that there exists an integer
N such that for n> N the ratios ¢,(z)/q,_,(z) are analytic in K and for
z€ K we have for n= N,

n
Ain_1 Qi

‘qn—Z(Z) =lqn-—2(z)| iqn—l(z)l "o
o) | @ ) | 2

here we used a decomposition in partial fraction, and we have put § = inf
{lz—x| | zeK, xe(X,uX,)nZ,} which is a strictly positive quantity
because K is a compact set and (X, U X;)n Z is a closed set, while K and
(X, v X,)nZ are disjoint. Note that [18, p. 47]

j}n=qn’—l(xj,n)>0,
qn(xj,n)
Y a;,= lim i"_—-l(—z)=1‘
j=1 o g,(2)
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Hence the ratio ¢, _,(z)/gq,(z) is uniformly bounded on every compact sub-
set of C\(X,UX,). Next we will prove that this ratio converges when
ze[A, o), and since this set has a limit point, we can use the theorem of
Stieltjes-Vitali [7, p. 121] to conclude the uniform convergence on com-
pact subsets of C\(X; U X,).

If we take ze [ 4, o0), then the coefficients in the recurrence formulas
(2.1) and (2.2) converge as n — co. We may therefore use a famous result of
Poincaré [16] to conclude that both ¢,, , ,(2)/q,,(z) and g, , ((2)/q2n_ 1(2)
converge as n — o0. The convergence of these ratios also follows from the
fact that the sequence

Sl2) = BanBon s ——22t1

Z—= 0

—1
Z—%mq
X {(Z_“Zn)(z_a2n+l)—ﬂ2n+l_ﬁZn_——n }

Z— 0y

-1
2=y
X {(Z*“2n~2)(2“0‘2n1)-ﬁ2n—1 _ﬂ2n~2:—L—}

Z— 0,3

is a chain sequence with (minimal) parameter sequence

-1
n 4202 Z— 0,
g,,(z)=1—12—ii) (2= 05 2~y 1) = Bows 1 — ———}
qln(z) Z— 0y,

(this means f,(z)=g,(z)[1—g,_.(z)]), and since f,(z) converges for
ze[A, o) also g,(z) will converge [7, p. 102]. To determine the limit we
divide Eq.(2.1) by ¢,,(z) and Eq.(2.2) by ¢,,,:(z). Then let n - o to
obtain

b2b3
0(z)

0(z)= {(z—al)(z—az)—(bf-!-bg_)} -

If we solve this equation we get
Q(2)=3{(z—a)(z—ay)— (b] + b3)
+/[(z—a,)(z—a;) — (b7 + b3)]° — 4b7b3 }.

Since ¢,(z)/q, (z) = «© as z —» o we have to choose the positive sign in
this solution, so that also Q(z) » o0 as z— 0. ||

The asymptotic relation does not hold on X, U X, since on this set the
ratio ¢,(z)/q._,(z) is not bounded. In particular the asymptotic relation
does not hold on the spectrum S(W). However, on X, one might find a
subsequence for which the asymptotic result holds.
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COROLLARY. Suppose that condition (1.3) is fulfilled, then as n > «,

4u(s) Q@) +8,

V@ e 24
L Ganri(z) Q)+ D3
(i) q2n(2) e a; (23)

uniformly on compact subsets of C\(X,u X,).
Proof. From the recurrence formula (1.1) we easily obtain
n+1(2) n(2)
q2 + 1( = ( _ ) q2 _ ,32,, :
G2n—1(2) Gan—1(2)

and since the left-hand side converges uniformly on compact subsets of
C\(X,u X,), (2.4) follows immediately by letting n — cc. The same is true
for (2.5). 1

THEOREM 2. Under the condition (1.3) we have as n —> o,

1 ‘In(z) z—(a; +a,)/2
n4.(z) \/[(z—a,)(z—az)—(b2+b)]2 4b2b2

uniformly on every compact subset of C\(X,u X,).

(2.6)

Proof. The sequence g¢,(z)/q,_,(z) converges uniformly on compact
subsets of C\ (X, U X,) to Q(z), then also the sequence of derivatives (g,(z)/
q._,(2))’ converges uniformly on compact subsets of C\(X,u X,) to Q'(z)
[17, Theorem 10.28]. Taking derivatives of (2.3) yields

0(2)_dh-22) Q'(2)
qn(z) q,- 2(2) Q(Z)

uniformly on compact subsets of C\(X, U X,). Now let K be a compact set
in C\(X, U X,), then

1ghlz)_1 2 (qa,-(z) _q'z,--z(z)> L a2
2nqa(z) 2n, 5 \5(2)  qy-2(2))  2mgaw_o(2)

where N is such that g¢,(x) has no zeros for xe K and n>2N —2. Then
Cesaro’s lemma leads to

1 42(2) 10°(2)
2 g:(2) " 2 0(z)
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uniformly on every compact subset of C\(X,; U X,). A similar reasoning
holds for odd indexes. Then explicitly calculating Q'(z)/Q(z) gives the
desired result. ||

Observe that both the asymptotic behaviors of the ratios ¢,(z)/q,_,(2)
and g,(z)/q.(z) only depend on the limits of the sequences {«,} and {8,},
and not on these sequences themselves. So we have invariant asymptotic
behavior for these functions.

III. INVARIANT QUADRATURE FORMULAS

In this section some applications of the results of the previous section are
given. We will use the concept of weak convergence for this purpose [4]. A
sequence of distribution functions F,(x) converges weakly to a distribution
function F(x), which is denoted by F,(x)=>F(x), if for every continuous
and bounded function f(x)

[ fey )= [ fx) aF(). (3.1)

A very useful transform in the theory of orthogonal polynomials is the
Stieltjes transform. If F(x) is a distribution function, i.e., a nondecreasing
real function with F(—o0)=0 and F(oo) =1, then its Stieltjes transform is
defined as

+o dF(x)

—ow 2

S(F(x); z) = [ cC\R. (32)

This function is analytic in both the sets {z|{Imz>0} and {z|Im z<0}
and it determines the function F(x) uniquely if we normalize F(x) to be
right continuous. A way to prove weak convergence is to prove that the
Stieltjes transform S(F,(x);z) converges to the Stieltjes transform
S(F(x); z) uniformly on every compact subset of C\R. This statement is
known as the Grommer-Hamburger theorem [3, Appendix ].

In this paper we will need the Stieltjes transform of two distribution
functions: let |y| <a < B and define

Flxia, f) =2 [ Lo, (3.3)

Ry RN =

2 2 _ 23172 2 _ ,2)\1/2q2
G(XQOC,B,'V)‘:;[(a U iﬂZiL@)Z Y) ]

x [ vE-Cve-o (3.4)

- |t —7
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where Ig(t) is the indicator function of the set B=[—f, —alufa, f]. A
straightforward but tedious calculation yields

LeMMA. Let ze C\[—f, —~a]u[a, B], then

(i) S(F(x;a, B); 2)= (3.5)

z
\/22 — 2 \/22 _ Bz
(i) S(G(x;a B,7);2)
_ 2(z+7)
22 _yz_ [(az_yz)(ﬂz_y2)]1/2 + \/Zz_az \/22—[32
The roots \/z* —a® and /2> — B? are chosen such that 2%/ /z* —o® \ /2% — B?

is analytic in C\([ — B, —a]wu [a, B]) and tends to 1 as z tends to infinity.

(3.6)

From now on we denote a(;,=min (a,, a,), a,,=max (a,, a;) and the
same for b, and b(,, The Christoffel numbers {4,,} of the orthogonal
polynomials {g,(x)} are defined to be the unique numbers such that the
Gauss-Jacobi mechanical quadrature

[ p(x) dwix) = Z e

holds for every polynomial p(x) of degree at most 2n—1 ([18], p 47).

THEOREM 3. Suppose that condition (1.3) is fulfilled. Let {p,(x)} be
othonormal polynomials that satisfy (1.3) and {A;,} its Christoffel numbers,
then for every continuous function f(x)

(i) Z 520 Pon - 1(X520) S(X;20) (3.7)

1+ a;

1 b%‘ i
0 0 a6 (x -2 % ) + B0 i)
1

2n+1

(ii) Z 'q'j,2n+1p%n(xj,2n+1)f(xj,2n+l) (3.8)

J=1

a,;+a b%—b?
2 [ fr) a6 (x- 2% p, )+ B g
2
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where we have put

a2
a2=(a1 2az) + (b, — b,),
_ 2
ﬁ2=(”*2“2> +(b; +by)% (39)
=‘11"a2
==

and the function G(x; a, B, y) is as in (3.4).

Proof. 1t is very elementary to write

qn—l(z)__: i aj,n , (310)

qn(z) j=1 quj,n
where the numbers q;, are equal to g, _,(x;,)/g.(x;,). It is well known [18,
p. 48] that
—_In 1 .
Pne1 Pr—18X7n) Pu(Xsn)

ot

hence a,,=4;, p2_,(x;,). Define a discrete distribution function that
makes jumps at the zeros {x;,} by

Gn(x)z Z aj,nU(x—xj,n)’ (311)
j=1
where
Ux)=1, x=0,

=0, x<0.

Note that every a,, is positive and that
n n
Z a;,= Z Ajn P~ 1(X10)

=" pr ) aw) =1,

which follows from the Gauss-Jacobi mechanical quadrature. (Note that
we used this already in the proof of Theorem 1.) The Stieltjes transform of

Go(x) is by (3.10),
S(G ) 2)= 3 —n_ _dn=1(2)

ohz—x

J.n qn(z) ’
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and if we use the corollary to Theorem 1 we have
z—a,
bi+0(z)’

Z—a2
b3+ Q(z)

S(Ganlx); 2) =

S8(G 4 1(x);2) >

uniformly on every compact subset of C\R as n— oo. Some tedious
calculations enable us to write

z—ay (by+b,— |b1_bz|)2
B+00) 47 (2z+a,-ay)

a;+a\* [a,—a,\’
Yoo e

+/(z—ay)(z—ay)— (b~ b,)? \/(z—al)(z—az)—<b1+bz)2}_

16163 —(b3—b7) 1
2b? z—a,

Use (3.6) to identify the first term as

b a,+a,, )
ES<G<X 2 ,a,ﬁ,?),z)

with «, f,and y as in (3.9). The second term is easily seen to be the Stieltjes
transform of

b2 —p?
P yix—ay),
bi .
and since weak convergence is equivalent to (3.1) we have the result in (i).
The result in (ii) follows by interchanging (a,, b,) by (a,, 5,). 1

Next we will give a result on the zero distribution of orthogonal
polynomials that satisfy (1.3). This result has also been obtained by
Geronimus [11, p. 76], but by other methods.

THEOREM 4. If condition (1.3) is fulfilled, then for every continuous

Sfunction f(x)

¥ s S ar (s~ % p). G

1
n=

where o and B are as in (3.9) and F(x; a, B) is as in (3.3).

640/44/3-6
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Proof. As in the previous proof we use a decomposition into partial
fractions to obtain

q.(2)

qn(z ) j=1 zZ— j,n

lM:

Now we define the distribution functions

F(x)=1 3 Ulr—1,); (.13)

j=1

hence nF,(x) equals the number of zeros of g,(x) less than or equal to x.
The Stieltjes transform is

S(F,,(x);z):l Z 1 1g2)

nj:lz_xj,n nqn( )

so that from (2.6) we may conclude that

z—(a,+ay)2

S ;Z) -
(a5 2) J Uz —a))(z - a,)— (b} + b3)]*— 4b} b3

uniformly on compact subsets of C\R. Then use (3.5) to identify this limit
as the Stieltjes transform of F(x —{(a,+a,)/2; o, f). Hence F,(x)=
F(x—(a, +a,)/2; a, B) and from (3.1) we obtain the desired result. ||

This last theorem gives the asymptotic zero distribution of the
polynomials {g,(x)}: first, we mention that the theorem is also true for
every bounded measurable function f(x) which is continuous almost
everywhere [4, Theorem 5.2.ii], ie., for Riemann integrable functions. If
we take f(x) to be the indicator function of the interval [ p, ¢], then

dF(X“al ;az; a, ﬂ)y

where N(n; p, q) is the number of zeros of g,(x) in the interval [p, ¢]. It
turns out that as n — oo the number of zeros of ¢,(x) outside [ -8, —aJu
[« B] is of order o(n) (where o(n)/n tends to zero if n — o), and in these
intervals the zeros are more dense near the endpoints 1o and + 5.

N(n; p, q)
)

P
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IV. SPECIAL CASES

We will now consider some special cases of the previous theorems. The
most important case is when a, =a,=a and b, =b,=b>0. The functions
F and G in Theorems 3 and 4 then have the form

1= 1
Ple=a0.20) =2 [ s - smar (8
G(x—a;0,2b 0)=—1—r ST (1—a) I (1) dt.
s Uy s 2b27'C - [a— 2b,a+ 2b]

Theorems 1-4 then coincide with resuits of Nevai [13]. Theorem 4 is a
slight generalization of Maki’s result [127]. Another important case is when
b,=b,=b>0. For this case Chihara [6, 7] proved that the zeros are
dense in the set

a,+a a,—a,\? 172
[ -{(05) )
N2 12
u[am,““;“%{(“l 2“2) +4b2} ]

and this is just the set on which the limiting zero distribution function
F(x—(a;+a,)/2; { la,—a,|, {(a;—a,)/2+4b*}'?) is concentrated. The
result of Theorem 4, however, is stronger than Chihara’s result since it
indicates how dense the zeros are distributed in the set mentioned higher.
The case a, =a,=a and the general case are new, except for the zero dis-
tribution which was also obtained by Geronimus [11].

Special attention should be paid to the case where b, or b, is equal to
zero. We will formulate these in a theorem.

THEOREM 5. Suppose that (1.3) is satisfied and that b,,=0. Then for
every continuous function f(x)

1) Y Ay P2 1(Xy20) S120)
j=1

fla,) if ,=0

JplE e

+(al;a2+ﬁ>f(a_142;g_z_ﬁ>} if b, =0,




270 WALTER VAN ASSCHE
2n41

(ii) Z Ajanet pgn(xj,ln+ D (X2 41)
j=1

flay) ifb, =0
Jpllesme) )
()] e

i) 53 e -5 i (252 en) s (25 5-)

where f* = ((a; — a,)/2)* + b,
Proof. Equations (2.4) and (2.5) become for this case,

B
gls)  |zma-ifh=0
——— 1
42012} .
z—a, ifb,=0,
b? .
q2n+l(z)_) Z—a,— Z-—‘az lfb2$0
q2n(z)
Z—a, ifb, =0,

while (2.6) turns out to be

1 1
;%—*(z—fl—gﬁw((z-al)(z“%)_b(zzjl

Hence the Stieltjes transforms of the functions G,(x) in (3.11) satisfy
uniformly on compact subsets of C\R

! ifb,=0
Z—ay
S{Gou{x)s 2} -
AR S ST T
28 lz—(a,+a))2—B z—(a,+ay)2+8 !

and interchanging (a,,b,) and (a,,b,) gives a similar result for
S(G 24 1(X); z). From these asymptotics (i) and (ii) are immediate. The
Stieltjes transforms of the functions F,(x) in (3.13) have the behaviour

1 1 L
SELxR2) =5 {z~— @ra)2—p - +a2)/2+ﬁ}

uniformly on every compact subset of C\R, from which (iii) follows. }



ORTHOGONAL POLYNOMIALS 271

Hence, whenever one of b, or b, is zero the distribution functions G,(x)
and F,(x) converge weakly to a distribution function that makes at most
two jumps. This means that for large n most of the zeros will be concen-
trated around these points where the limit distribution function makes a
jump.

V. EXAMPLES

In this section we will give some sequences of orthogonal polynomials to
which the above results apply. We use the terminology in Chihara [7].
Examples 1-5 also follow from Nevai’s work but are given here to get a
better understanding of the results in the previous sections.

ExaMPLE 1. Jacobi polynomials satisfy (1.1) with
BZ _ (X2
an = ’
n+a+p)2n+a+p+2)

dn(n+a)n+ Bn+o+p)

b= v et p—Dn+a+ pr@ntoat B 1)

with > —1 and > —1. It is easy to see that «, — 0 and 8, — §, hence we
obtain uniformiy on every compact subset of C\[ -1, 1]

4u(2) z+4/2°—1

qn- l(z) 2 ’
(5.1)
1z 1
nqn(z) ,/22—1’
and for every continuous function f(x)
n 2 1
Y AiaPi(x5) f(x;,) == f f(x)J1—=x%dx
a . (52)

dx.

1 et flx)
;];1 f(xj’")—’ﬂj‘_l ———1_x2
These results are well known.

EXAMPLE 2. Pollaczek polynomials have

—b
an=__—'__—’
n+it+a+c
g = (n+c)n+2l+c—-1)

T4(n+Ata+c—1)n+i+a+c)
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where a > |b| together with 2A+c¢>0and ¢>0 or 24+c>1 and ¢> —1.
Since a,, » 0 and f, — § as n > oo we have the same asymptotics as in (5.1)
and (5.2).

ExaMPLE 3. Modified Lommel polynomials have the coeflicients

%, =0,

1

ﬁ"=4(n+v)(n+v—1)’

with v> 0, so that §,— 0. Hence we have a degenerate limit and we have,
uniformly on every compact subset of C\({0} U {mass points of W})

9a(2)
qn-— l(z)
14,2
nq,(z)

(5.3)
1
z
and for every continuous function f(x)

z jnpn 1( n)f(xj,n)_’f(o)’

- L (5.4)
5 2 1 (5a) = 10)
That these limits are degenerate at 0 can perhaps be understood by the fact

that the modified Lommel polynomials are orthogonal with respect to a
discrete distribution function W(x) that makes jumps at the points

Uit k=0, +£1, £2,..},

where - <j, ;<j,0<0<j, <, denote the zeros of the Bessel
function J,(x), and this set has 0 as its only limit point.

ExaMmpLE 4. Tricomi-Carlitz polynomials, where
a,=0,

n
n+a)n+a—1)

ﬁﬂ=

with @ >0. Again §, — 0 and we have the same asymptotics as in (5.3) and
(5.4). Note that also in this case the polynomials are orthogonal with
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respect to _a discrete distribution function, and the jumps now are at
{21/ /k+a; k=0,1,2,.}. This set also has 0 as its only limit point.

ExaMPLE 5. The g-polynomials of Al-Salam and Carlitz satisfy (1.1)
with

t,=(1+a)q",
Bo=—ag" (1),

where a<0 and 0<¢g<1. Therefore both «, and §, converge to 0 as
n— o and Egs. (5.3) and (5.4) are valid. Once again these polynomials are
orthogonal with respect to a discrete distribution function and the jumps
occur at the points {g*, ag*; k=0, 1,2,..} which again has 0 as its only
limit point.

Now we will also give an example where the sequences {a,} and {B,}
have two limit points:

ExaMpPLE 6. Consider the sequence of polynomials {g,(x)} that satisfy
(1.1) with

®zp =dy; Ban=1b1;
X2p 41 =d3; Boni1=b3. (5.5)

Obviously they satisfy condition (1.3) so that Theorems 1-4 are valid here.
Moreover, we can explicitely give the distribution function W(x) with
respect to whom these polynomials are orthogonal. Nevai pointed out to
me that the distribution function was also given by Geronimus [10].

THEOREM 6. The polynomials {q,(x)} with the coefficients as in (5.5) are
orthogonal with respect to
b2 (x_a1+02. b%'—b(zl

W)= 6 (x =250 p, =)+ L0 Uik
1 1

where o, B and y are as in (3.9) and G(x; a, B, y) is as in (3.4).

Proof. Consider the polynomials {g¥(x)} with coefficients as in (5.5)
but with b, and b, interchanged. From (1.1) we easily obtain

q;n+l(z) q;n—l(z)
= (z—a,)— b,
Py AU

q;n +2(z) q’{n(z)
= = (z—a,) — b,
it oG CTRTh G
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From the corollary to Theorem 1 we know that the limits of the functions
in these equations exist:

q3.(2)

:+2(2)
93, +1(2)

- QI(Z)’

= Q(2).

Let n — oo in those equations to obtain

1
0iz)=(z~a)—b} 5,

1
Q,(z)= (Z—az)_bfa(‘;),

so that, when continuously combining these equations, we find the con-
tinued fraction.

1 1
Ql(z)_ b%

z—a ———
2
b1
Z_az———-b’i
z—a, ———
1 2
bi

zZ—a,~

This is a so-called Jacebi fraction, and from the theory of continued frac-
tions [20, 7] it follows that

1
_Q—IZ_)-—S(W(X),Z)’

where W(x) is the distribution function with respect to whom the
polynomials {q,(x)} with coefficients as in (5.5) are orthogonal. As in the
proof of Theorem 3 we have

1 b%,) ( ( a,+a, ) )
—— == 85|G[x~— ;o B, —v )iz
0.6 B 7 P

b2 — b2
+ == = < S(U(x~ay); 2),

from which the theorem follows. |
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Special cases of these polynomials where already studied by Chihara.
When a,=a,=a and b,=b,=b>b, the polynomials ¢,(x) are equal to
U,((x — a)/2b), where U,(x) is the Chebyshev polynomial of the second
kind of degree n. For a, = —c¢; a,=c and B,=13 Chihara [5] obtained the
weight function

x+c\?
w(x)=<|‘ :) (1T+c2=x)"2,  2<x?<1 4¢3
X—C

=0, elsewhere,

and for a, =a,=0 and b, = b; b, = a the weight function was found to be

1 x2_a2_b2 271/2
W(X)=-|?(|:(1—(-—-2a—b——):| , xe[—(a+b),—|a—b|]
ula—b|,a+b],

=0, elsewhere,

and in addition there is a jump at 0 [7, p. 91].
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